Book Image

Introduction to R for Quantitative Finance

By : Gergely Daróczi, Michael Puhle, Edina Berlinger (EURO), Daniel Daniel Havran, Kata Váradi, Agnes Vidovics-Dancs, Agnes Vidovics Dancs, Michael Phule, Zsolt Tulassay, Peter Csoka, Marton Michaletzky, Edina Berlinger (EURO), Varadi Kata
Book Image

Introduction to R for Quantitative Finance

By: Gergely Daróczi, Michael Puhle, Edina Berlinger (EURO), Daniel Daniel Havran, Kata Váradi, Agnes Vidovics-Dancs, Agnes Vidovics Dancs, Michael Phule, Zsolt Tulassay, Peter Csoka, Marton Michaletzky, Edina Berlinger (EURO), Varadi Kata

Overview of this book

Introduction to R for Quantitative Finance will show you how to solve real-world quantitative fi nance problems using the statistical computing language R. The book covers diverse topics ranging from time series analysis to fi nancial networks. Each chapter briefl y presents the theory behind specific concepts and deals with solving a diverse range of problems using R with the help of practical examples.This book will be your guide on how to use and master R in order to solve quantitative finance problems. This book covers the essentials of quantitative finance, taking you through a number of clear and practical examples in R that will not only help you to understand the theory, but how to effectively deal with your own real-life problems.Starting with time series analysis, you will also learn how to optimize portfolios and how asset pricing models work. The book then covers fixed income securities and derivatives such as credit risk management.
Table of Contents (17 chapters)
Introduction to R for Quantitative Finance
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Noise in the covariance matrix


When we optimize a portfolio, we don't have the real covariance matrix and the expected return vector (that are the inputs of the mean-variance model); we use observations to estimate them, so Q, r, and the output of the model are also random variables.

Without going into the details, we can say that this leads to surprisingly great uncertainty in the model. In spite of the strong law of large numbers, optimal portfolio weights sometimes vary between . Fortunately, if we have a few years' data (daily returns), the relative error of the measured risk is only 20-25 %.