Book Image

Python for Finance

By : Yuxing Yan
Book Image

Python for Finance

By: Yuxing Yan

Overview of this book

Table of Contents (20 chapters)
Python for Finance
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Preface
Index

Definition of an implied volatility


From the previous chapter, we know that for a set of input variables—S (the present stock price), X (the exercise price), T (the maturity date in years), r (the continuously compounded risk-free rate), and sigma (the volatility of the stock, that is, the annualized standard deviation of its returns)—we could estimate the price of a call option based on the Black-Scholes-Merton option model. Recall that to price a European call option, we have the following Python code of five lines:

from scipy import log,exp,sqrt,stats
def bs_call(S,X,T,r,sigma):
    d1=(log(S/X)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T))
    d2 = d1-sigma*sqrt(T)
    return S*stats.norm.cdf(d1)-X*exp(-r*T)*stats.norm.cdf(d2)

After entering a set of five values, we can estimate the call price as follows:

>>>bs_call(40,40,0.5,0.05,0.25)
3.3040017284767735

On the other hand, if we know S, X, T, r, and c, how can we estimate sigma? Here, sigma is our implied volatility. In other words...