Book Image

Python for Finance

By : Yuxing Yan
Book Image

Python for Finance

By: Yuxing Yan

Overview of this book

A hands-on guide with easy-to-follow examples to help you learn about option theory, quantitative finance, financial modeling, and time series using Python. Python for Finance is perfect for graduate students, practitioners, and application developers who wish to learn how to utilize Python to handle their financial needs. Basic knowledge of Python will be helpful but knowledge of programming is necessary.
Table of Contents (14 chapters)
13
Index

Simulation of stock price movements

We mentioned in the previous sections that in finance, returns are assumed to follow a normal distribution, whereas prices follow a lognormal distribution. The stock price at time t+1 is a function of the stock price at t, mean, standard deviation, and the time interval as shown in the following formula:

Simulation of stock price movements

In this formula, Simulation of stock price movements is the stock price at t+1, Simulation of stock price movements is the expected stock return, Simulation of stock price movements is the time interval (Simulation of stock price movements), T is the time (in years), n is the number of steps, ε is the distribution term with a zero mean, and σ is the volatility of the underlying stock. With a simple manipulation, equation (4) can lead to the following equation that we will use in our programs:

Simulation of stock price movements

In a risk-neutral work, no investors require compensation for bearing risk. In other words, in such a world, the expected return on any security (investment) is the risk-free rate. Thus, in a risk-neutral world, the previous equation becomes the following equation:

Simulation of stock price movements

If you want to learn more...