Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Haskell Data Analysis cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Haskell Data Analysis cookbook

Haskell Data Analysis cookbook

By : Nishant Shukla
3.7 (6)
close
close
Haskell Data Analysis cookbook

Haskell Data Analysis cookbook

3.7 (6)
By: Nishant Shukla

Overview of this book

Step-by-step recipes filled with practical code samples and engaging examples demonstrate Haskell in practice, and then the concepts behind the code. This book shows functional developers and analysts how to leverage their existing knowledge of Haskell specifically for high-quality data analysis. A good understanding of data sets and functional programming is assumed.
Table of Contents (14 chapters)
close
close
13
Index

Catching I/O code faults

Making sure our code doesn't crash in the process of data mining or analysis is a substantially genuine concern. Some computations may take hours, if not days. Haskell gifts us with type safety and strong checks to help ensure a program will not fail, but we must also take care to double-check edge cases where faults may occur.

For instance, a program may crash ungracefully if the local file path is not found. In the previous recipe, there was a strong dependency on the existence of input.txt in our code. If the program is unable to find the file, it will produce the following error:

mycode: input.txt: openFile: does not exist (No such file or directory)

Naturally, we should decouple the file path dependency by enabling the user to specify his/her file path as well as by not crashing in the event that the file is not found.

Consider the following revision of the source code.

How to do it…

Create a new file, name it Main.hs, and perform the following steps:

  1. First, import a library to catch fatal errors as follows:
    import Control.Exception (catch, SomeException)
  2. Next, import a library to get command-line arguments so that the file path is dynamic. We use the following line of code to do this:
    import System.Environment (getArgs)
  3. Continuing as before, define and implement main as follows:
    main :: IO ()
    main = do
  4. Define a fileName string depending on the user-provided argument, defaulting to input.txt if there is no argument. The argument is obtained by retrieving an array of strings from the library function, getArgs :: IO [String], as shown in the following steps:
    args <- getArgs
      let filename = case args of
        (a:_) -> a
            _ -> "input.txt"
  5. Now apply readFile on this path, but catch any errors using the library's catch :: Exception e => IO a -> (e -> IO a) -> IO a function. The first argument to catch is the computation to run, and the second argument is the handler to invoke if an exception is raised, as shown in the following commands:
      input <- catch (readFile fileName)
        $ \err -> print (err::SomeException) >> return ""
  6. The input string will be empty if there were any errors reading the file. We can now use input for any purpose using the following command:
      print $ countWords input
  7. Don't forget to define the countWords function as follows:
    countWords input = map (length.words) (lines input)

How it works…

This recipe demonstrates two ways to catch errors, listed as follows:

  • Firstly, we use a case expression that pattern matches against any argument passed in. Therefore, if no arguments are passed, the args list is empty, and the last pattern, "_", is caught, resulting in a default filename of input.txt.
  • Secondly, we use the catch function to handle an error if something goes wrong. When having trouble reading a file, we allow the code to continue running by setting input to an empty string.

There's more…

Conveniently, Haskell also comes with a doesFileExist :: FilePath -> IO Bool function from the System.Directory module. We can simplify the preceding code by modifying the input <- … line. It can be replaced with the following snippet of code:

exists <- doesFileExist filename
input <- if exists then readFile filename else return ""

In this case, the code reads the file as an input only if it exists. Do not forget to add the following import line at the top of the source code:

import System.Directory (doesFileExist)
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Haskell Data Analysis cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon