Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Haskell Data Analysis cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Haskell Data Analysis cookbook

Haskell Data Analysis cookbook

By : Nishant Shukla
3.7 (6)
close
close
Haskell Data Analysis cookbook

Haskell Data Analysis cookbook

3.7 (6)
By: Nishant Shukla

Overview of this book

Step-by-step recipes filled with practical code samples and engaging examples demonstrate Haskell in practice, and then the concepts behind the code. This book shows functional developers and analysts how to leverage their existing knowledge of Haskell specifically for high-quality data analysis. A good understanding of data sets and functional programming is assumed.
Table of Contents (14 chapters)
close
close
13
Index

What this book covers

Chapter 1, The Hunt for Data, identifies core approaches in reading data from various external sources such as CSV, JSON, XML, HTML, MongoDB, and SQLite.

Chapter 2, Integrity and Inspection, explains the importance of cleaning data through recipes about trimming whitespaces, lexing, and regular expression matching.

Chapter 3, The Science of Words, introduces common string manipulation algorithms, including base conversions, substring matching, and computing the edit distance.

Chapter 4, Data Hashing, covers essential hashing functions such as MD5, SHA256, GeoHashing, and perceptual hashing.

Chapter 5, The Dance with Trees, establishes an understanding of the tree data structure through examples that include tree traversals, balancing trees, and Huffman coding.

Chapter 6, Graph Fundamentals, manifests rudimentary algorithms for graphical networks such as graph traversals, visualization, and maximal clique detection.

Chapter 7, Statistics and Analysis, begins the investigation of important data analysis techniques that encompass regression algorithms, Bayesian networks, and neural networks.

Chapter 8, Clustering and Classification, involves quintessential analysis methods that involve k-means clustering, hierarchical clustering, constructing decision trees, and implementing the k-Nearest Neighbors classifier.

Chapter 9, Parallel and Concurrent Design, introduces advanced topics in Haskell such as forking I/O actions, mapping over lists in parallel, and benchmarking performance.

Chapter 10, Real-time Data, incorporates streamed data interactions from Twitter, Internet Relay Chat (IRC), and sockets.

Chapter 11, Visualizing Data, deals with sundry approaches to plotting graphs, including line charts, bar graphs, scatter plots, and D3.js visualizations.

Chapter 12, Exporting and Presenting, concludes the book with an enumeration of algorithms for exporting data to CSV, JSON, HTML, MongoDB, and SQLite.

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Haskell Data Analysis cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon