Book Image

Python Machine Learning

By : Sebastian Raschka
Book Image

Python Machine Learning

By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (21 chapters)
Python Machine Learning
About the Author
About the Reviewers

Debugging neural networks with gradient checking

Implementations of artificial neural networks can be quite complex, and it is always a good idea to manually check that we have implemented backpropagation correctly. In this section, we will talk about a simple procedure called gradient checking, which is essentially a comparison between our analytical gradients in the network and numerical gradients. Gradient checking is not specific to feedforward neural networks but can be applied to any other neural network architecture that uses gradient-based optimization. Even if you are planning to implement more trivial algorithms using gradient-based optimization, such as linear regression, logistic regression, and support vector machines, it is generally not a bad idea to check if the gradients are computed correctly.

In the previous sections, we defined a cost function where is the matrix of the weight coefficients of an artificial network. Note that is—roughly speaking—a "stacked" matrix consisting...