Book Image

Python Machine Learning

By : Sebastian Raschka
Book Image

Python Machine Learning

By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (21 chapters)
Python Machine Learning
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Debugging algorithms with learning and validation curves


In this section, we will take a look at two very simple yet powerful diagnostic tools that can help us to improve the performance of a learning algorithm: learning curves and validation curves. In the next subsections, we will discuss how we can use learning curves to diagnose if a learning algorithm has a problem with overfitting (high variance) or underfitting (high bias). Furthermore, we will take a look at validation curves that can help us address the common issues of a learning algorithm.

Diagnosing bias and variance problems with learning curves

If a model is too complex for a given training dataset—there are too many degrees of freedom or parameters in this model—the model tends to overfit the training data and does not generalize well to unseen data. Often, it can help to collect more training samples to reduce the degree of overfitting. However, in practice, it can often be very expensive or simply not feasible to collect more...