Book Image

Python Machine Learning

By : Sebastian Raschka
Book Image

Python Machine Learning

By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (21 chapters)
Python Machine Learning
About the Author
About the Reviewers


In the beginning of this chapter, we discussed how to chain different transformation techniques and classifiers in convenient model pipelines that helped us to train and evaluate machine learning models more efficiently. We then used those pipelines to perform k-fold cross-validation, one of the essential techniques for model selection and evaluation. Using k-fold cross-validation, we plotted learning and validation curves to diagnose the common problems of learning algorithms, such as overfitting and underfitting. Using grid search, we further fine-tuned our model. We concluded this chapter by looking at a confusion matrix and various different performance metrics that can be useful to further optimize a model's performance for a specific problem task. Now, we should be well-equipped with the essential techniques to build supervised machine learning models for classification successfully.

In the next chapter, we will take a look at ensemble methods, methods that allow us to combine...