Book Image

Python Machine Learning

By : Sebastian Raschka
Book Image

Python Machine Learning

By: Sebastian Raschka

Overview of this book

Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world’s leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you’ll soon be able to answer some of the most important questions facing you and your organization.
Table of Contents (21 chapters)
Python Machine Learning
About the Author
About the Reviewers


In this chapter, we learned how to use machine learning algorithms to classify text documents based on their polarity, which is a basic task in sentiment analysis in the field of natural language processing. Not only did we learn how to encode a document as a feature vector using the bag-of-words model, but we also learned how to weight the term frequency by relevance using term frequency-inverse document frequency.

Working with text data can be computationally quite expensive due to the large feature vectors that are created during this process; in the last section, we learned how to utilize out-of-core or incremental learning to train a machine learning algorithm without loading the whole dataset into a computer's memory.

In the next chapter, we will use our document classifier and learn how to embed it into a web application.