Book Image

Scala for Machine Learning

By : Patrick R. Nicolas
Book Image

Scala for Machine Learning

By: Patrick R. Nicolas

Overview of this book

Table of Contents (20 chapters)
Scala for Machine Learning
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

References


  • [A:1] Daily Scala: Enumeration. J. Eichar. 2009 (http://daily-scala.blogspot.com/2009/08/enumerations.html)

  • [A:2] Matrices and Linear Transformations 2nd Edition. C. Cullen. Dover Books on Mathematics. 1990

  • [A:3] Linear Algebra: A Modern Introduction. D Poole. BROOKS/COLE CENGAGE Learning. 2010

  • [A:4] Matrix decomposition for regression analysis. D. Bates. 2007 (http://www.stat.wisc.edu/courses/st849-bates/lectures/Orthogonal.pdf)

  • [A:5] Eigenvalues and Eigenvectors of Symmetric Matrices. I. Mateev. 2013 (http://www.slideshare.net/vanchizzle/eigenvalues-and-eigenvectors-of-symmetric-matrices)

  • [A:6] Linear Algebra Done Right 2nd Edition (§5 Eigenvalues and Eigenvectors) S Axler. Springer. 2000

  • [A:7] First Order Predicate Logic. S. Kaushik. CSE India Institute of Technology, Delhi (http://www.cse.iitd.ac.in/~saroj/LFP/LFP_2013/L4.pdf)

  • [A:8] Matrix Recipes. J. Movellan. 2005 (http://www.math.vt.edu/people/dlr/m2k_svb11_hesian.pdf)

  • [A:9] Gradient descent. Wikipedia (http://en.wikipedia.org/wiki/Gradient_descent)

  • [A:10] Large Scale Machine Learning: Stochastic Gradient Descent Convergence. A. Ng. Stanford University (https://class.coursera.org/ml-003/lecture/107)

  • [A:11] Large-Scala Machine Learning with Stochastic Gradient Descent. L Bottou. 2010 (http://leon.bottou.org/publications/pdf/compstat-2010.pdf)

  • [A:12] Overview of Quasi-Newton optimization methods. Dept. Computer Science, University of Washington (https://homes.cs.washington.edu/~galen/files/quasi-newton-notes.pdf)

  • [A:13] Lecture 2-3: Gradient and Hessian of Multivariate Function. M. Zibulevsky. 2013 (http://www.youtube.com)

  • [A:14] Introduction to the Lagrange Multiplier. ediwm.com video (http://www.noodle.com/learn/details/334954/introduction-to-the-lagrange-multiplier)

  • [A:15] A brief introduction to Dynamic Programming (DP). A. Kasibhatla. Nanocad Lab (http://nanocad.ee.ucla.edu/pub/Main/SnippetTutorial/Amar_DP_Intro.pdf)

  • [A:16] Financial ratios. Wikipedia (http://en.wikipedia.org/wiki/Financial_ratio)

  • [A:17] Getting started in Technical Analysis (§1 Charts: Forecasting Tool or Folklore?) J Schwager. John Wiley & Sons. 1999

  • [A:18] Getting started in Technical Analysis (§4 Trading Ranges, Support & Resistance) J Schwager. John Wiley & Sons. 1999

  • [A:19] Options: a personal seminar (§1 Options: An Introduction, What is an Option) S. Fullman, New York Institute of Finance. Simon Schuster. 1992

  • [A:20] Options: a personal seminar (§2 Purchasing Options) S. Fullman New York Institute of Finance. Simon Schuster. 1992

  • [A:21] List of financial data feeds. Wikipedia (http://en.wikipedia.org/wiki/List_of_financial_data_feeds)