Book Image

Machine Learning for OpenCV

By : Michael Beyeler
Book Image

Machine Learning for OpenCV

By: Michael Beyeler

Overview of this book

Machine learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of machine learning, with Deep Learning driving innovative systems such as self-driving cars and Google’s DeepMind. OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and machine learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for. Machine learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your machine learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning. By the end of this book, you will be ready to take on your own machine learning problems, either by building on the existing source code or developing your own algorithm from scratch!
Table of Contents (13 chapters)

Discovering Hidden Structures with Unsupervised Learning

So far, we have focused our attention exclusively on supervised learning problems, where every data point in the dataset had a known label or target value. However, what do we do when there is no known output, or no teacher to supervise the learning algorithm?

This is what unsupervised learning is all about. In unsupervised learning, the learning is shown only in the input data and is asked to extract knowledge from this data without further instruction. We have already talked about one of the many forms that unsupervised learning comes in--dimensionality reduction. Another popular domain is cluster analysis, which aims to partition data into distinct groups of similar items.

In this chapter, we want to understand how different clustering algorithms can be used to extract hidden structures in simple, unlabeled datasets....