Book Image

Learning Bayesian Models with R

By : Hari Manassery Koduvely
Book Image

Learning Bayesian Models with R

By: Hari Manassery Koduvely

Overview of this book

Table of Contents (16 chapters)
Learning Bayesian Models with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Simulation of the posterior distribution


If one wants to find out the posterior of the model parameters, the sim( ) function of the arm package becomes handy. The following R script will simulate the posterior distribution of parameters and produce a set of histograms:

>posterior.bayes <- as.data.frame(coef(sim(fit.bayes)))
>attach(posterior.bayes)

>h1 <- ggplot(data = posterior.bayes,aes(x = X1)) + geom_histogram() + ggtitle("Histogram X1")
>h2 <- ggplot(data = posterior.bayes,aes(x = X2)) + geom_histogram() + ggtitle("Histogram X2")
>h3 <- ggplot(data = posterior.bayes,aes(x = X3)) + geom_histogram() + ggtitle("Histogram X3")
>h4 <- ggplot(data = posterior.bayes,aes(x = X4)) + geom_histogram() + ggtitle("Histogram X4")
>h5 <- ggplot(data = posterior.bayes,aes(x = X5)) + geom_histogram() + ggtitle("Histogram X5")
>h7 <- ggplot(data = posterior.bayes,aes(x = X7)) + geom_histogram() + ggtitle("Histogram X7")
>grid.arrange(h1,h2,h3,h4,h5,h7,nrow...