In this chapter, we learned about an important class of machine learning model, namely neural networks, and their Bayesian implementation. These models are inspired by the architecture of the human brain and they continue to be an area of active research and development. We also learned one of the latest advances in neural networks that is called deep learning. It can be used to solve many problems such as computer vision and natural language processing that involves highly cognitive elements. The artificial intelligent systems using deep learning were able to achieve accuracies comparable to human intelligence in tasks such as speech recognition and image classification. With this chapter, we have covered important classes of Bayesian machine learning models. In the next chapter, we will look at a different aspect: large scale machine learning and some of its applications in Bayesian models.

#### Learning Bayesian Models with R

##### By :

#### Learning Bayesian Models with R

##### By:

#### Overview of this book

Table of Contents (16 chapters)

Learning Bayesian Models with R

Credits

About the Author

About the Reviewers

www.PacktPub.com

Preface

Free Chapter

Introducing the Probability Theory

The R Environment

Introducing Bayesian Inference

Machine Learning Using Bayesian Inference

Bayesian Regression Models

Bayesian Classification Models

Bayesian Models for Unsupervised Learning

Bayesian Neural Networks

Bayesian Modeling at Big Data Scale

Index

Customer Reviews