In order to process large datasets using Hadoop and associated R packages, one needs a cluster of computers. In today's world, it is easy to get using cloud computing services provided by Amazon, Microsoft, and others. One needs to pay only for the amount of CPU and storage used. No need for upfront investments on infrastructure. The top four cloud computing services are AWS by Amazon, Azure by Microsoft, Compute Cloud by Google, and Bluemix by IBM. In this section, we will discuss running R programs on AWS. In particular, you will learn how to create an AWS instance; install R, RStudio, and other packages in that instance; develop and run machine learning models.

Learning Bayesian Models with R
By :

Learning Bayesian Models with R
By:
Overview of this book
Table of Contents (16 chapters)
Learning Bayesian Models with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Introducing the Probability Theory
The R Environment
Introducing Bayesian Inference
Machine Learning Using Bayesian Inference
Bayesian Regression Models
Bayesian Classification Models
Bayesian Models for Unsupervised Learning
Bayesian Neural Networks
Bayesian Modeling at Big Data Scale
Index
Customer Reviews