Book Image

Elasticsearch Essentials

Book Image

Elasticsearch Essentials

Overview of this book

With constantly evolving and growing datasets, organizations have the need to find actionable insights for their business. ElasticSearch, which is the world's most advanced search and analytics engine, brings the ability to make massive amounts of data usable in a matter of milliseconds. It not only gives you the power to build blazing fast search solutions over a massive amount of data, but can also serve as a NoSQL data store. This guide will take you on a tour to become a competent developer quickly with a solid knowledge level and understanding of the ElasticSearch core concepts. Starting from the beginning, this book will cover these core concepts, setting up ElasticSearch and various plugins, working with analyzers, and creating mappings. This book provides complete coverage of working with ElasticSearch using Python and performing CRUD operations and aggregation-based analytics, handling document relationships in the NoSQL world, working with geospatial data, and taking data backups. Finally, we’ll show you how to set up and scale ElasticSearch clusters in production environments as well as providing some best practices.
Table of Contents (18 chapters)
Elasticsearch Essentials
Credits
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
Index

Document analysis


When we index documents into Elasticsearch, it goes through an analysis phase that is necessary in order to create inverted indexes. It is a series of steps performed by Lucene, which is depicted in the following image:

The analysis phase is performed by analyzers that are composed of one or more char filters, a single tokenizer, and one or more token filters. You can declare separate analyzers for each field in your document depending on the need. For the same field, the analyzers can be the same for both indexing and searching or they can be different.

  • Character Filters: The job of character filters is to do cleanup tasks such as stripping out HTML tags.

  • Tokenizers: The next step is to split the text into terms that are called tokens. This is done by a tokenizer. The splitting can be done based on any rule such as whitespace. More details about tokenizers can be found at this URL: https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html...