Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Elasticsearch Essentials
  • Table Of Contents Toc
Elasticsearch Essentials

Elasticsearch Essentials

By : Bharvi Dixit
4.3 (6)
close
close
Elasticsearch Essentials

Elasticsearch Essentials

4.3 (6)
By: Bharvi Dixit

Overview of this book

With constantly evolving and growing datasets, organizations have the need to find actionable insights for their business. ElasticSearch, which is the world's most advanced search and analytics engine, brings the ability to make massive amounts of data usable in a matter of milliseconds. It not only gives you the power to build blazing fast search solutions over a massive amount of data, but can also serve as a NoSQL data store. This guide will take you on a tour to become a competent developer quickly with a solid knowledge level and understanding of the ElasticSearch core concepts. Starting from the beginning, this book will cover these core concepts, setting up ElasticSearch and various plugins, working with analyzers, and creating mappings. This book provides complete coverage of working with ElasticSearch using Python and performing CRUD operations and aggregation-based analytics, handling document relationships in the NoSQL world, working with geospatial data, and taking data backups. Finally, we’ll show you how to set up and scale ElasticSearch clusters in production environments as well as providing some best practices.
Table of Contents (12 chapters)
close
close
11
Index

Search requests using Python


All the queries that we have discussed can be performed with the Elasticsearch Python client using the search function. To do this, first store the query inside a variable that is query in the following example:

query = {
     "query": {
        "match_all": {}
     },
   }

Call the search function with all the parameters including the index name, document type, and query. The size parameter used in the following search request can also be included inside the query itself:

response = es.search(index='twitter', doc_type='tweets', body=query, size=2, request_timeout=20)

Note

To search against more than one index, instead of using a string value, you need to use a list of index names. The same applies for document types too.

The response data comes in the following format:

{
 "hits": {
   "hits": [
     {
       "_score": 1,
       "_type": "tweets",
       "_id": "649956033515773953",
       "_source": {
         "contributors": null,
         "truncated": false,
   ...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Elasticsearch Essentials
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon