Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Probabilistic Graphical Models in R
  • Table Of Contents Toc
Learning Probabilistic Graphical Models in R

Learning Probabilistic Graphical Models in R

3.7 (3)
close
close
Learning Probabilistic Graphical Models in R

Learning Probabilistic Graphical Models in R

3.7 (3)

Overview of this book

Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models. We’ll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we’ll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you’ll see the advantage of going probabilistic when you want to do prediction. Next, you’ll master using R packages and implementing its techniques. Finally, you’ll be presented with machine learning applications that have a direct impact in many fields. Here, we’ll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems.
Table of Contents (10 chapters)
close
close

Chapter 6. Bayesian Modeling – Linear Models

A linear regression model aims at explaining the behavior of one variable with another one, or several others, and by so doing, the assumption is that the relationship between the variables is linear. In general, the expectation of the target variable, the one you need to explain, is an affine transform of several other variables.

Linear models are presumably the most used statistical models, mainly because of their simplicity and the fact they have been studied for decades, leading to all possible extensions and analysis one can imagine. Basically all statistical packages, languages, or software implement linear regression models.

The idea of the model is really simple: a variable y is to be explained by several other variables xi by assuming a linear combination of x's—that is, a weighted sum of x's.

This model appeared in the 18th century in the work of Roger Joseph Boscovich. Then again, his method has been...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learning Probabilistic Graphical Models in R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon