Book Image

Clojure for Data Science

By : Garner
Book Image

Clojure for Data Science

By: Garner

Overview of this book

The term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist’s diverse needs. Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you’ll see how to make use of Clojure’s Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don’t yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language’s flexibility! You’ll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark’s MapReduce and GraphX’s BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models. Above all, by following the explanations in this book, you’ll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future.
Table of Contents (12 chapters)
11
Index

The reducers library

The count operation we implemented previously is a sequential algorithm. Each line is processed one at a time until the sequence is exhausted. But there is nothing about the operation that demands that it must be done in this way.

We could split the number of lines into two sequences (ideally of roughly equal length) and reduce over each sequence independently. When we're done, we would just add together the total number of lines from each sequence to get the total number of lines in the file:

The reducers library

If each Reduce ran on its own processing unit, then the two count operations would run in parallel. All the other things being equal, the algorithm would run twice as fast. This is one of the aims of the clojure.core.reducers library—to bring the benefit of parallelism to algorithms implemented on a single machine by taking advantage of multiple cores.

Parallel folds with reducers

The parallel implementation of reduce implemented by the reducers library is called fold...