Book Image

Advanced Machine Learning with Python

Book Image

Advanced Machine Learning with Python

Overview of this book

Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering.
Table of Contents (17 chapters)
Advanced Machine Learning with Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Chapter Code Requirements
Index

Deep belief networks


A DBN is a graphical model, constructed using multiple stacked RBMs. While the first RBM trains a layer of features based on input from the pixels of the training data, subsequent layers treat the activations of preceding layers as if they were pixels and attempt to learn the features in subsequent hidden layers. This is frequently described as learning the representation of data and is a common theme in deep learning.

How many multiple RBMs there should be depends on what is needed for the problem at hand. From a practical perspective, it's a trade-off between increasing accuracy and increasing computational cost. It is the case that each layer of RBMs will improve the lower bound of the log probability of the training data. In other words; the DBN almost inevitably becomes less bad with each additional layer of features.

As far as layer size is concerned, it is generally advantageous to reduce the number of nodes in the hidden layers of successive RBMs. One should avoid...