Book Image

Practical Machine Learning

By : Sunila Gollapudi
Book Image

Practical Machine Learning

By: Sunila Gollapudi

Overview of this book

This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naïve Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies.
Table of Contents (23 chapters)
Practical Machine Learning
Credits
Foreword
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Preface
Index

Chapter 13. Ensemble learning

This chapter is the concluding chapter of all the learning methods we have learned from Chapter 5, Decision Tree based learning. It is only apt to have this chapter as a closing chapter for the learning methods, as this learning method explains how effectively these methods can be used in a combination to maximize the outcome from the learners. Ensemble methods have an effective, powerful technique to achieve high accuracy across supervised and unsupervised solutions. Different models are efficient and perform very well in the selected business cases. It is important to find a way to combine the competing models into a committee, and there has been much research in this area with a fair degree of success. Also, as different views generate a large amount of data, the key aspect is to consolidate different concepts for intelligent decision making. Recommendation systems and stream-based text mining applications use ensemble methods extensively.

There have been...