Book Image

OpenCV By Example

By : Prateek Joshi, David Millán Escrivá, Vinícius G. Mendonça
Book Image

OpenCV By Example

By: Prateek Joshi, David Millán Escrivá, Vinícius G. Mendonça

Overview of this book

Open CV is a cross-platform, free-for-use library that is primarily used for real-time Computer Vision and image processing. It is considered to be one of the best open source libraries that helps developers focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you are completely new to the concept of Computer Vision or have a basic understanding of it, this book will be your guide to understanding the basic OpenCV concepts and algorithms through amazing real-world examples and projects. Starting from the installation of OpenCV on your system and understanding the basics of image processing, we swiftly move on to creating optical flow video analysis or text recognition in complex scenes, and will take you through the commonly used Computer Vision techniques to build your own Open CV projects from scratch. By the end of this book, you will be familiar with the basics of Open CV such as matrix operations, filters, and histograms, as well as more advanced concepts such as segmentation, machine learning, complex video analysis, and text recognition.
Table of Contents (18 chapters)
OpenCV By Example
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

The Mixture of Gaussians approach


Before we talk about Mixture of Gaussians (MOG), let's see what a mixture model is. A mixture model is just a statistical model that can be used to represent the presence of subpopulations within our data. We don't really care about what category each data point belongs to. All we need to do is identify whether the data has multiple groups inside it. Now, if we represent each subpopulation using the Gaussian function, then it's called Mixture of Gaussians. Let's consider the following image:

Now, as we gather more frames in this scene, every part of the image will gradually become part of the background model. This is what we discussed earlier as well. If a scene is static, the model adapts itself to make sure that the background model is updated. The foreground mask, which is supposed to represent the foreground object, looks like a black image at this point because every pixel is part of the background model.

Note

OpenCV has multiple algorithms implemented...