Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Computing precision, recall, and F1-score


In the Getting classification straight with the confusion matrix recipe, you learned that we can label classified samples as true positives, false positives, true negatives, and false negatives. With the counts of these categories, we can calculate many evaluation metrics of which we will cover four in this recipe, as given by the following equations:

These metrics range from zero to one, with zero being the worst theoretical score and one being the best. Actually, the worst score would be the one we get by random guessing. The best score in practice may be lower than one because in some cases we can only hope to emulate human performance, and there may be ambiguity about what correct classification should be, for instance, in the case of sentiment analysis (covered in the Python Data Analysis book).

  • The accuracy (10.1) is the ratio of correct predictions.

  • Precision (10.2) measures relevance as the likelihood of classifying a negative class sample...