Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Evaluating clusters with the mean silhouette coefficient


Clustering is an unsupervised machine learning type of analysis. Although we don't know in general what the best clusters are, we can still get an idea of how good the result of clustering is. One way is to calculate the silhouette coefficients as defined in the following equation:

In the preceding equation, a(i) is the average dissimilarity of sample i with respect to other samples in the same cluster. A small a(i) indicates that the sample belongs in its cluster. b(i) is the lowest average dissimilarity of i to other cluster. It indicates the next best cluster for i. If the silhouette coefficients s(i) of a sample is close to 1, it means that the sample is properly assigned. The value of s(i) varies between -1 to 1. The average of the silhouette coefficients of all samples measures the quality of the clusters.

We can use the mean silhouette coefficient to inform our decision for the number of clusters of the K-means clustering algorithm...