Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Introduction


The ENIAC, built between 1943 and 1946, filled a large room with eighteen thousand tubes and had a 20-bit memory. We have come a long way since then. The growth has been exponential as also predicted by Moore's law. Whether we are dealing with a self-fulfilling prophecy or a fundamental phenomenon is, of course, hard to say. Purportedly, the growth is starting to decelerate.

Given our current knowledge of technology, thermodynamics, and quantum mechanics, we can set hard limits for Moore's law. However, our assumptions may be wrong; for instance, scientists and engineers may come up with fundamentally better techniques to build chips. (One such development is quantum computing, which is currently far from widespread.) The biggest hurdle is heat dissipation, which is commonly measured in units of kT, with k the Boltzmann constant (about 10-23 J/K) and T in Kelvin (freezing point is 273.15 K). The heat dissipation per bit for a chip is at least kT (10-20 J at 350 K). Semi-conductors...