Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Speeding up numerical expressions with Numexpr


Numexpr is a software package for the evaluation of numerical array expressions, which is also installed when you install pandas, and you may have seen it announced in the watermark of other recipes (tested with Numexpr 2.3.1). Numexpr tries to speed up calculations by avoiding the creation of temporary variables because reading the variables can be a potential bottleneck. The largest speedups are expected for arrays that can't fit in the CPU cache.

Numexpr splits large arrays into chunks, which fit in the cache, and it also uses multiple cores in parallel when possible. It has an evaluate() function, which accepts simple expressions and evaluates them (refer to the documentation for the complete list of supported features).

How to do it...

  1. The imports are as follows:

    import numexpr as ne
    import numpy as np
  2. Generate random arrays, which should be too large to hold in a cache:

    a = np.random.rand(1e6)
    b = np.random.rand(1e6)
  3. Evaluate a simple arithmetic...