Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Calculating the mean, variance, skewness, and kurtosis on the fly


Mean, variance, skewness, and kurtosis are important quantities in statistics. Some of the calculations involve sums of squares, which for large values may lead to overflow. To avoid loss of precision, we have to realize that variance is invariant under shift by a certain constant number.

When we have enough space in memory, we can directly calculate the moments, taking into account numerical issues if necessary. However, we may want to not keep the data in memory because there is a lot of it, or because it is more convenient to calculate the moments on the fly.

An online and numerically stable algorithm to calculate the variance has been provided by Terriberry (Terriberry, Timothy B. (2007), Computing Higher-Order Moments Online). We will compare this algorithm, although it is not the best one, to the implementation in the LiveStats module. If you are interested in improved algorithms, take a look at the Wikipedia page listed...