Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Using arbitrary precision for linear algebra


A lot of models can be reduced to systems of linear equations, which are the domain of linear algebra. The mpmath library mentioned in the Using arbitrary precision for optimization recipe can do arbitrary precision linear algebra too.

Theoretically, we can approximate any differentiable function as a polynomial series. To find the coefficients of the polynomial, we can define a system of linear equations, basically taking powers of a data vector (vector as mathematical term) and using a vector of ones to represent the constant in the polynomial. We will solve such a system with the mpmath lu_solve() function. As example data, we will use wind speed data grouped by the day of year.

Getting ready

For the relevant instructions, refer to the Using arbitrary precision for optimization recipe.

How to do it...

Follow these steps to use arbitrary precision for linear algebra:

  1. The imports are as follows:

    import mpmath
    import dautil as dl
    import numpy as np
    import...