Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Introduction


Time is an important dimension in science and daily life. Time series data is abundant and requires special techniques. Usually, we are interested in trends and seasonality or periodicity. In mathematical terms, this means that we try to represent the data by (usually linear) polynomial or trigonometric functions, or a combination of both.

When we investigate seasonality, we generally distinguish between time domain and frequency domain analysis. In the time domain, we can use a dozen pandas functions for rolling windows. We can also smooth data to remove noise while hopefully keeping enough of the signal. Smoothing is in many respects similar to fitting, which is convenient because we can reuse some of the regression tools we know.

To get in the frequency domain, we apply transforms such as the fast Fourier Transform and discrete cosine transform. We can then further analyze signals with periodograms.