Book Image

Mastering Machine Learning with Spark 2.x

By : Michal Malohlava, Alex Tellez, Max Pumperla
Book Image

Mastering Machine Learning with Spark 2.x

By: Michal Malohlava, Alex Tellez, Max Pumperla

Overview of this book

The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment.
Table of Contents (9 chapters)
3
Ensemble Methods for Multi-Class Classification

NLP - a brief primer

Just like artificial neural networks, NLP is a relatively "old" subject, but one that has garnered a massive amount of attention recently due to the rise of computing power and various applications of machine learning algorithms for tasks that include, but are not limited to, the following:

  • Machine translation (MT): In its simplest form, this is the ability of machines to translate one language of words to another language of words. Interestingly, proposals for machine translation systems pre-date the creation of the digital computer. One of the first NLP applications was created during World War II by an American scientist named Warren Weaver whose job was to try and crack German code. Nowadays, we have highly sophisticated applications that can translate a piece of text into any number of different languages we desire!
  • Speech recognition (SR)...