Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Regression Analysis with Python
  • Table Of Contents Toc
Regression Analysis with Python

Regression Analysis with Python

By : Luca Massaron , Alberto Boschetti
3 (4)
close
close
Regression Analysis with Python

Regression Analysis with Python

3 (4)
By: Luca Massaron , Alberto Boschetti

Overview of this book

Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.
Table of Contents (11 chapters)
close
close
10
Index

Chapter 1. Regression – The Workhorse of Data Science

Welcome to this presentation on the workhorse of data science, linear regression, and its related family of linear models.

Nowadays, interconnectivity and data explosion are realities that open a world of new opportunities for every business that can read and interpret data in real time. Everything is facilitating the production and diffusion of data: the omnipresent Internet diffused both at home and at work, an army of electronic devices in the pockets of large portions of the population, and the pervasive presence of software producing data about every process and event. So much data is generated daily that humans cannot deal with it because of its volume, velocity, and variety. Thus, machine learning and AI are on the rise.

Coming from a long and glorious past in the field of statistics and econometrics, linear regression, and its derived methods, can provide you with a simple, reliable, and effective tool to learn from data and act on it. If carefully trained with the right data, linear methods can compete well against the most complex and fresh AI technologies, offering you unbeatable ease of implementation and scalability for increasingly large problems.

In this chapter, we will explain:

  • Why linear models can be helpful as models to be evaluated in a data science pipeline or as a shortcut for the immediate development of a scalable minimum viable product
  • Some quick indications for installing Python and setting it up for data science tasks
  • The necessary modules for implementing linear models in Python
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Regression Analysis with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon