Book Image

Mastering Java Machine Learning

By : Uday Kamath, Krishna Choppella
Book Image

Mastering Java Machine Learning

By: Uday Kamath, Krishna Choppella

Overview of this book

Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.
Table of Contents (20 chapters)
Mastering Java Machine Learning
Credits
Foreword
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Linear Algebra
Index

What is not machine learning?


It is important to recognize areas that share a connection with machine learning but cannot themselves be considered part of machine learning. Some disciplines may overlap to a smaller or larger extent, yet the principles underlying machine learning are quite distinct:

  • Business intelligence (BI) and reporting: Reporting key performance indicators (KPI's), querying OLAP for slicing, dicing, and drilling into the data, dashboards, and so on that form the central components of BI are not machine learning.

  • Storage and ETL: Data storage and ETL are key elements in any machine learning process, but, by themselves, they don't qualify as machine learning.

  • Information retrieval, search, and queries: The ability to retrieve data or documents based on search criteria or indexes, which form the basis of information retrieval, are not really machine learning. Many forms of machine learning, such as semi-supervised learning, can rely on the searching of similar data for modeling, but that doesn't qualify searching as machine learning.

  • Knowledge representation and reasoning: Representing knowledge for performing complex tasks, such as ontology, expert systems, and semantic webs, does not qualify as machine learning.