Book Image

Mastering Java Machine Learning

By : Uday Kamath, Krishna Choppella
Book Image

Mastering Java Machine Learning

By: Uday Kamath, Krishna Choppella

Overview of this book

Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.
Table of Contents (20 chapters)
Mastering Java Machine Learning
Credits
Foreword
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Linear Algebra
Index

Summary


The assumptions in stream-based learning are different from batch-based learning, chief among them being upper bounds on operating memory and computation times. Running statistics using sliding windows or sampling must be computed in order to scale to a potentially infinite stream of data. We make the distinction between learning from stationary data, where it is assumed the generating data distribution is constant, and dynamic or evolving data, where concept drift must be accounted for. This is accomplished by techniques involving the monitoring of model performance changes or the monitoring of data distribution changes. Explicit and implicit adaptation methods are ways to adjust to the concept change.

Several supervised and unsupervised learning methods have been adapted for incremental online learning. Supervised methods include linear, non-linear, and ensemble techniques, The HoeffdingTree is introduced which is particularly interesting due largely in part to its guarantees on...