Book Image

Mastering Java Machine Learning

By : Uday Kamath, Krishna Choppella
Book Image

Mastering Java Machine Learning

By: Uday Kamath, Krishna Choppella

Overview of this book

Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.
Table of Contents (20 chapters)
Mastering Java Machine Learning
Credits
Foreword
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Linear Algebra
Index

Axioms of probability


Kolmogorov's axioms of probability can be stated in terms of the sample space S of possible events, E1, E2, E3, …En and the real-valued probability P(E) of an event E. The axioms are:

  1. P(E) ≥ 0 for all E ϵ S

  2. P(S) = 1

Together, these axioms say that probabilities cannot be negative numbers—impossible events have zero probability—no events outside the sample space are possible as it is the universe of possibilities under consideration, and that the probability of either of two mutually exclusive events occurring is equal to the sum of their individual probabilities.