Book Image

Julia Cookbook

By : Raj R Jalem, Jalem Raj Rohit
Book Image

Julia Cookbook

By: Raj R Jalem, Jalem Raj Rohit

Overview of this book

Want to handle everything that Julia can throw at you and get the most of it every day? This practical guide to programming with Julia for performing numerical computation will make you more productive and able work with data more efficiently. The book starts with the main features of Julia to help you quickly refresh your knowledge of functions, modules, and arrays. We’ll also show you how to utilize the Julia language to identify, retrieve, and transform data sets so you can perform data analysis and data manipulation. Later on, you’ll see how to optimize data science programs with parallel computing and memory allocation. You’ll get familiar with the concepts of package development and networking to solve numerical problems using the Julia platform. This book includes recipes on identifying and classifying data science problems, data modelling, data analysis, data manipulation, meta-programming, multidimensional arrays, and parallel computing. By the end of the book, you will acquire the skills to work more effectively with your data.
Table of Contents (12 chapters)

Cross validation


Cross validation is one of the most underrated processes in the domain of data science and analytics. However, it is very popular among the practitioners of competitive data science. It is a model evaluation method. It can give the analyst an idea about how well the model would perform on new predictions that the model has not yet seen. It is also extensively used to gauge and avoid the problem of overfitting, which occurs due to an excessive precise fit on the training set leading to inaccurate or high-error predictions on the testing set.

Getting ready

To get ready, the MLBase library has to be installed and imported. So, as we already installed it for the Preprocessing recipe, we don't need to install it again. Instead, we can directly import it using the using MLBase command. This can be done as follows:

using MLBase

How to do it...

  1. Firstly, we will look at the k-fold cross-validation method, which is one of the most popular cross validation methods used. The input data...