Book Image

Mastering Spark for Data Science

By : Bifet, Morgan, Amend, Hallett, George
Book Image

Mastering Spark for Data Science

By: Bifet, Morgan, Amend, Hallett, George

Overview of this book

Data science seeks to transform the world using data, and this is typically achieved through disrupting and changing real processes in real industries. In order to operate at this level you need to build data science solutions of substance –solutions that solve real problems. Spark has emerged as the big data platform of choice for data scientists due to its speed, scalability, and easy-to-use APIs. This book deep dives into using Spark to deliver production-grade data science solutions. This process is demonstrated by exploring the construction of a sophisticated global news analysis service that uses Spark to generate continuous geopolitical and current affairs insights.You will learn all about the core Spark APIs and take a comprehensive tour of advanced libraries, including Spark SQL, Spark Streaming, MLlib, and more. You will be introduced to advanced techniques and methods that will help you to construct commercial-grade data products. Focusing on a sequence of tutorials that deliver a working news intelligence service, you will learn about advanced Spark architectures, how to work with geographic data in Spark, and how to tune Spark algorithms so they scale linearly.
Table of Contents (15 chapters)

Chapter 1.  The Big Data Science Ecosystem

As a data scientist, you'll no doubt be very familiar with handling files and processing perhaps even large amounts of data. However, as I'm sure you will agree, doing anything more than a simple analysis over a single type of data requires a method of organizing and cataloguing data so that it can be managed effectively. Indeed, this is the cornerstone of a great data scientist. As the data volume and complexity increases, a consistent and robust approach can be the difference between generalized success and over-fitted failure!

This chapter is an introduction to an approach and ecosystem for achieving success with data at scale. It focuses on the data science tools and technologies. It introduces the environment, and how to configure it appropriately, but also explains some of the nonfunctional considerations relevant to the overall data architecture. While there is little actual data science at this stage, it provides the essential platform to pave the way for success in the rest of the book.

In this chapter, we will cover the following topics:

  • Data management responsibilities
  • Data architecture
  • Companion tools