Book Image

Mastering Spark for Data Science

By : Andrew Morgan, Antoine Amend, Matthew Hallett, David George
Book Image

Mastering Spark for Data Science

By: Andrew Morgan, Antoine Amend, Matthew Hallett, David George

Overview of this book

Data science seeks to transform the world using data, and this is typically achieved through disrupting and changing real processes in real industries. In order to operate at this level you need to build data science solutions of substance –solutions that solve real problems. Spark has emerged as the big data platform of choice for data scientists due to its speed, scalability, and easy-to-use APIs. This book deep dives into using Spark to deliver production-grade data science solutions. This process is demonstrated by exploring the construction of a sophisticated global news analysis service that uses Spark to generate continuous geopolitical and current affairs insights.You will learn all about the core Spark APIs and take a comprehensive tour of advanced libraries, including Spark SQL, Spark Streaming, MLlib, and more. You will be introduced to advanced techniques and methods that will help you to construct commercial-grade data products. Focusing on a sequence of tutorials that deliver a working news intelligence service, you will learn about advanced Spark architectures, how to work with geographic data in Spark, and how to tune Spark algorithms so they scale linearly.
Table of Contents (22 chapters)
Mastering Spark for Data Science
Credits
Foreword
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Designing a Spark Streaming application


Building a real-time application differs from batch processing in terms of architecture and components involved. While the latter can easily be built bottom-up, where programmers add functionalities and components when needed, the former usually needs to be built top-down with a solid architecture in place. In fact, due to the constraints of volume and velocity (or veracity in a streaming context), an inadequate architecture will prevent programmers from adding new functionalities. One always needs a clear understanding of how streams of data are interconnected, how and where they are processed, cached, and retrieved.

A tale of two architectures

In terms of stream processing using Apache Spark, there are two emerging architectures that should be considered: Lambda architecture and Kappa architecture. Before we delve into the details of the two architectures, let's discuss the problems they are trying to solve, what they have in common, and in what context...