Book Image

Mastering Spark for Data Science

By : Andrew Morgan, Antoine Amend, Matthew Hallett, David George
Book Image

Mastering Spark for Data Science

By: Andrew Morgan, Antoine Amend, Matthew Hallett, David George

Overview of this book

Data science seeks to transform the world using data, and this is typically achieved through disrupting and changing real processes in real industries. In order to operate at this level you need to build data science solutions of substance –solutions that solve real problems. Spark has emerged as the big data platform of choice for data scientists due to its speed, scalability, and easy-to-use APIs. This book deep dives into using Spark to deliver production-grade data science solutions. This process is demonstrated by exploring the construction of a sophisticated global news analysis service that uses Spark to generate continuous geopolitical and current affairs insights.You will learn all about the core Spark APIs and take a comprehensive tour of advanced libraries, including Spark SQL, Spark Streaming, MLlib, and more. You will be introduced to advanced techniques and methods that will help you to construct commercial-grade data products. Focusing on a sequence of tutorials that deliver a working news intelligence service, you will learn about advanced Spark architectures, how to work with geographic data in Spark, and how to tune Spark algorithms so they scale linearly.
Table of Contents (22 chapters)
Mastering Spark for Data Science
Credits
Foreword
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Using Elasticsearch as a caching layer


Our ultimate goal is to train a new classifier at each batch (every 15 minutes). However, the classifier will be trained using more than just the few records we downloaded within that current batch. We somehow have to cache the text content over a larger period of time (set to 24h) and retrieve it whenever we need to train a new classifier. With Larry Wall's quote in mind, we will try to be as lazy as possible maintaining the data consistency over this online layer. The basic idea is to use a Time to live (TTL) parameter that will seamlessly drop any outdated record. The Cassandra database provides this feature out of the box (so does HBase or Accumulo), but Elasticsearch is already part of our core architecture and can easily be used for that purpose. We will create the following mapping for the gzet/twitter index with the _ttl parameter enabled:

$ curl -XPUT 'http://localhost:9200/gzet'
$ curl -XPUT 'http://localhost:9200/gzet/_mapping/twitter' -d...