Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Predictive Analytics with Python
  • Table Of Contents Toc
Mastering Predictive Analytics with Python

Mastering Predictive Analytics with Python

By : Joseph Babcock
3 (2)
close
close
Mastering Predictive Analytics with Python

Mastering Predictive Analytics with Python

3 (2)
By: Joseph Babcock

Overview of this book

The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life
Table of Contents (11 chapters)
close
close
10
Index

Chapter 3. Finding Patterns in the Noise – Clustering and Unsupervised Learning

One of the natural questions to ask about a dataset is if it contains groups. For example, if we examine financial market data consisting of stock price fluctuations over time, are there groups of stocks that fall and rise with a similar pattern? Similarly, for a set of customer transactions from an e-commerce business we might ask if are there groups of user accounts distinguished by patterns of similar purchasing activity? By identifying groups of related items using the methods described in this chapter, we can understand data as a set of general patterns rather than just individual points. These patterns can help in making high-level summaries at the outset of a predictive modeling project, or as an ongoing way to report on the shape of the data we are modeling. The groupings produced can serve as insights themselves, or they can provide starting points for the models we will cover in later...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Predictive Analytics with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon