Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Bayesian Analysis with Python
  • Table Of Contents Toc
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.4 (10)
close
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.4 (10)
By: Osvaldo Martin

Overview of this book

The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.
Table of Contents (10 chapters)
close
close
9
Index

Chapter 3. Juggling with Multi-Parametric and Hierarchical Models

In the previous two chapters, we learned the core ideas of the Bayesian approach and how to use PyMC3 to do Bayesian inference. If we want to build models of arbitrary complexity (and we certainly do), we must learn how to build multi-parametric models. Almost all interesting problems out there need to be modeled using more than one parameter. Moreover, in many real-world problems, some parameters depend on the values of other parameters; such relationships can be elegantly modeled using Bayesian hierarchical models. We will learn how to build these models and the advantages of using them. These are such important concepts that we will keep revisiting them over and over again throughout the rest of the book.

In this chapter, we will cover the following topics:

  • Nuisance parameters and marginalized distributions
  • The Gaussian model
  • Robust estimation in the presence of outliers
  • Comparing groups and measuring the effect size...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Bayesian Analysis with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon