Book Image

Big Data Analytics

By : Venkat Ankam
Book Image

Big Data Analytics

By: Venkat Ankam

Overview of this book

Big Data Analytics book aims at providing the fundamentals of Apache Spark and Hadoop. All Spark components – Spark Core, Spark SQL, DataFrames, Data sets, Conventional Streaming, Structured Streaming, MLlib, Graphx and Hadoop core components – HDFS, MapReduce and Yarn are explored in greater depth with implementation examples on Spark + Hadoop clusters. It is moving away from MapReduce to Spark. So, advantages of Spark over MapReduce are explained at great depth to reap benefits of in-memory speeds. DataFrames API, Data Sources API and new Data set API are explained for building Big Data analytical applications. Real-time data analytics using Spark Streaming with Apache Kafka and HBase is covered to help building streaming applications. New Structured streaming concept is explained with an IOT (Internet of Things) use case. Machine learning techniques are covered using MLLib, ML Pipelines and SparkR and Graph Analytics are covered with GraphX and GraphFrames components of Spark. Readers will also get an opportunity to get started with web based notebooks such as Jupyter, Apache Zeppelin and data flow tool Apache NiFi to analyze and visualize data.
Table of Contents (18 chapters)
Big Data Analytics
Credits
About the Author
Acknowledgement
About the Reviewers
www.PacktPub.com
Preface
Index

Architecture of Spark Streaming


Spark Streaming processes a continuous stream of data by dividing the stream into micro-batches called a Discretized Stream or DStream. DStream is an API provided by Spark Streaming that creates and processes micro-batches. DStream is nothing but a sequence of RDDs processed on Spark's core execution engine like any other RDD. DStream can be created from any streaming source such as Flume or Kafka.

As shown in the following Figure 5.1, input data from streaming sources are received by the Spark Streaming application to create sub-second DStreams, which are then processed by the Spark core engine. Batches of each output are then sent to various output sinks. The input data is received by receivers and distributed across the cluster to form the micro-batch. Once the time interval completes, the micro-batch is processed through parallel operations such as join, transform, window operations, or output operations.

From deployment and execution perspective, Spark...