Book Image

Practical Predictive Analytics

By : Ralph Winters
Book Image

Practical Predictive Analytics

By: Ralph Winters

Overview of this book

This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio, and a description of the best practices for organizing your projects. On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model. We will continue your journey in the cloud by extending your skill set by learning about Databricks and SparkR, which allow you to develop predictive models on vast gigabytes of data.
Table of Contents (19 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Setting the stage by creating survival objects


Coding survival analysis in R usually starts with creating what is known as a survival object using the Surv() function. A survival object contains more information than a regular dataframe. The purpose of the survival object is to keep track of the time and the event status (0 or 1) for each observation. It is also to designate what the response (dependent) variable is.

At a minimum, you need to supply a single time variable and an event when defining a survival object. In our case, we will use the tenure time (Xtenure2) as the time variable, and a formula that designates the defining event. In our case, this will be Churn == 1, since that means that the customer churned in that month:

install.packages("survival")
library(survival)
ChurnStudy$SurvObj <- with(ChurnStudy, Surv(Xtenure2, Churn == 1))

As I mentioned in earlier chapters, I always like to issue a str() command after I create a new dataframe, just to make sure the results are as expected...