Book Image

Principles of Data Science

Book Image

Principles of Data Science

Overview of this book

Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you’ll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You’ll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.
Table of Contents (20 chapters)
Principles of Data Science
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

The bias variance tradeoff


We have discussed the concept of bias and variance briefly in the previous chapters. When we are discussing these two concepts, we are generally speaking of supervised learning algorithms. We are specifically talking about deriving errors from our predictive models due to bias and variance.

Error due to bias

When speaking of errors due to Bias, we are speaking of the difference between the expected prediction of our model and the actual (correct) value, which we are trying to predict. Bias, in effect, measures how far, in general, our model's predictions are from the correct value.

Think about bias as simply being the difference between a predicted value and the actual value. For example, consider that our model, represented as F(x), predicts the value of 29 as follows:

Here, the value of 29 should have been predicted at 79, then:

If a machine learning model tends to be very accurate in its prediction (regression or classification), then it is considered a low Bias...