Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Using stride tricks with NumPy


In this recipe, we will dig deeper into the internals of NumPy arrays, by generalizing the notion of row-major and column-major orders to multidimensional arrays. The general notion is that of strides, which describe how the items of a multidimensional array are organized within a one-dimensional data buffer. Strides are mostly an implementation detail, but they can also be used in specific situations to optimize some algorithms.

Getting ready

We suppose that NumPy has been imported and that the aid() function has been defined (refer to the Understanding the internals of NumPy to avoid unnecessary array copying recipe).

>>> import numpy as np
>>> def aid(x):
        # This function returns the memory
        # block address of an array.
        return x.__array_interface__['data'][0]

How to do it...

  1. Strides are integer numbers describing the byte step in the contiguous block of memory for each dimension.

    >>> x = np.zeros(10)
        x.strides...