Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Fitting a Bayesian model by sampling from a posterior distribution with a Markov chain Monte Carlo method


In this recipe, we illustrate a very common and useful method for characterizing a posterior distribution in a Bayesian model. Imagine that you have some data and you want to obtain information about the underlying random phenomenon. In a frequentist approach, you could try to fit a probability distribution within a given family of distributions, using a parametric method such as the maximum likelihood method. The optimization procedure would yield parameters that maximize the probability of observing the data if given the null hypothesis.

In a Bayesian approach, you consider the parameters themselves as random variables. Their prior distributions reflect your initial knowledge about these parameters. After the observations, your knowledge is updated, and this is reflected in the posterior distributions of the parameters.

A typical goal for Bayesian inference is to characterize the posterior...