Book Image

Machine Learning Algorithms

Book Image

Machine Learning Algorithms

Overview of this book

In this book, you will learn all the important machine learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. The algorithms that are covered in this book are linear regression, logistic regression, SVM, naïve Bayes, k-means, random forest, TensorFlow and feature engineering. In this book, you will how to use these algorithms to resolve your problems, and how they work. This book will also introduce you to natural language processing and recommendation systems, which help you to run multiple algorithms simultaneously. On completion of the book, you will know how to pick the right machine learning algorithm for clustering, classification, or regression for your problem
Table of Contents (22 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Principal component analysis


In many cases, the dimensionality of the input dataset X is high and so is the complexity of every related machine learning algorithm. Moreover, the information is seldom spread uniformly across all the features and, as discussed in the previous chapter, there will be high entropy features together with low entropy ones, which, of course, don't contribute dramatically to the final outcome. In general, if we consider a Euclidean space, we have:

So each point is expressed using an orthonormal basis made of m linearly independent vectors. Now, considering a dataset X, a natural question arises: is it possible to reduce m without a drastic loss of information? Let's consider the following figure (without any particular interpretation):

It doesn't matter which distributions generated X=(x,y), however, the variance of the horizontal component is clearly higher than the vertical one. As discussed, it means that the amount of information provided by the first component...