Book Image

Machine Learning with Spark. - Second Edition

By : Rajdeep Dua, Manpreet Singh Ghotra
Book Image

Machine Learning with Spark. - Second Edition

By: Rajdeep Dua, Manpreet Singh Ghotra

Overview of this book

This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML. Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML. By the end of this book, you will acquire the skills to leverage Spark's features to create your own scalable machine learning applications and power a modern data-driven business.
Table of Contents (13 chapters)

SchemaRDD

SchemaRDD is a combination of RDD and schema information. It also offers many rich and easy-to-use APIs (that is, the DataSet API). SchemaRDD is not used with 2.0 and is internally used by DataFrame and Dataset APIs.

A schema is used to describe how structured data is logically organized. After obtaining the schema information, the SQL engine is able to provide the structured query capability for the corresponding data. The DataSet API is a replacement for Spark SQL parser's functions. It is an API to achieve the original program logic tree. Subsequent processing steps reuse Spark SQL's core logic. We can safely consider DataSet API's processing functions as completely equivalent to that of SQL queries.

SchemaRDD is an RDD subclass. When a program calls the DataSet API, a new SchemaRDD object is created, and a logic plan attribute of the new object is created by adding a new logic operation node on the original logic plan tree. Operations of the DataSet API (like RDD) are of two types--Transformation and Action.

APIs related to the relational operations are attributed to the Transformation type.

Operations associated with data output sources are of Action type. Like RDD, a Spark job is triggered and delivered for cluster execution, only when an Action type operation is called.