Book Image

Machine Learning with Spark. - Second Edition

By : Rajdeep Dua, Manpreet Singh Ghotra
Book Image

Machine Learning with Spark. - Second Edition

By: Rajdeep Dua, Manpreet Singh Ghotra

Overview of this book

This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML. Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML. By the end of this book, you will acquire the skills to leverage Spark's features to create your own scalable machine learning applications and power a modern data-driven business.
Table of Contents (13 chapters)

Extracting the right features from your data

As the underlying models for regression are the same as those for the classification case, we can use the same approach to create input features. The only practical difference is that the target is now a real-valued variable as opposed to a categorical one. The LabeledPoint class in ML library already takes this into account, as the label field is of the Double type, so it can handle both cases.

Extracting features from the bike sharing dataset

To illustrate the concepts in this chapter, we will be using the bike sharing dataset. This dataset contains hourly records of the number of bicycle rentals in the capital bike sharing system. It also contains variables related to date, time, weather, seasonal, and holiday information...