Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning Cookbook

Python Machine Learning Cookbook

By : Joshi, Vahid Mirjalili
4.4 (5)
close
close
Python Machine Learning Cookbook

Python Machine Learning Cookbook

4.4 (5)
By: Joshi, Vahid Mirjalili

Overview of this book

Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We’ll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you’ll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You’ll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples.
Table of Contents (14 chapters)
close
close
13
Index

Introduction


Predictive modeling is probably one of the most exciting fields in data analytics. It has gained a lot of attention in recent years due to massive amounts of data being available in many different verticals. It is very commonly used in areas concerning data mining to forecast future trends.

Predictive modeling is an analysis technique that is used to predict the future behavior of a system. It is a collection of algorithms that can identify the relationship between independent input variables and the target responses. We create a mathematical model, based on observations, and then use this model to estimate what's going to happen in the future.

In predictive modeling, we need to collect data with known responses to train our model. Once we create this model, we validate it using some metrics, and then use it to predict future values. We can use many different types of algorithms to create a predictive model. In this chapter, we will use Support Vector Machines to build linear...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon