Book Image

Python Machine Learning Cookbook

By : Prateek Joshi, Vahid Mirjalili
Book Image

Python Machine Learning Cookbook

By: Prateek Joshi, Vahid Mirjalili

Overview of this book

Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We’ll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you’ll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You’ll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples.
Table of Contents (19 chapters)
Python Machine Learning Cookbook
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Introduction


A recommendation engine is a model that can predict what a user may be interested in. When we apply this to the context of movies, this becomes a movie-recommendation engine. We filter items in our database by predicting how the current user might rate them. This helps us in connecting the users with the right content in our dataset. Why is this relevant? If you have a massive catalog, then the users may or may not find all the relevant content. By recommending the right content, you increase consumption. Companies such as Netflix heavily rely on recommendations to keep the user engaged.

Recommendation engines usually produce a set of recommendations using either collaborative filtering or content-based filtering. The difference between the two approaches is in the way the recommendations are mined. Collaborative filtering builds a model from the past behavior of the current user as well as ratings given by other users. We then use this model to predict what this user might be...