Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning Cookbook

Python Machine Learning Cookbook

By : Joshi, Vahid Mirjalili
4.4 (5)
close
close
Python Machine Learning Cookbook

Python Machine Learning Cookbook

4.4 (5)
By: Joshi, Vahid Mirjalili

Overview of this book

Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We’ll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you’ll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You’ll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples.
Table of Contents (14 chapters)
close
close
13
Index

Constructing a k-nearest neighbors classifier


The k-nearest neighbors is an algorithm that uses k-nearest neighbors in the training dataset to find the category of an unknown object. When we want to find the class to which an unknown point belongs to, we find the k-nearest neighbors and take a majority vote. Let's take a look at how to construct this.

How to do it…

  1. Create a new Python file, and import the following packages:

    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    from sklearn import neighbors, datasets
    
    from utilities import load_data
  2. We will use the data_nn_classifier.txt file for input data. Let's load this input data:

    # Load input data
    input_file = 'data_nn_classifier.txt'
    data = load_data(input_file)
    X, y = data[:,:-1], data[:,-1].astype(np.int)

    The first two columns contain input data and the last column contains the labels. Hence, we separated them into X and y, as shown in the preceding code.

  3. Let's visualize the input data:

    # Plot input data
    plt.figure...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon